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Abstract
Analytical solutions of Bean’s critical state model with critical current density
Jc being anisotropic are obtained for superconducting cylindrical samples
of arbitrary cross section in a parallel geometry. We present a method for
calculating the flux fronts and magnetization curves. Results are presented for
cylinders with elliptical cross section with a specific form of the anisotropy.
We find that over a certain range of the anisotropy parameter the flux fronts
have shapes similar to those for an isotropic sample. However, in general, the
presence of anisotropy significantly modifies the shape of the flux fronts. The
field for full flux penetration also depends on the anisotropy parameter. The
method is extended to the case of anisotropic Jc that also depends on the local
field B , and magnetization hysteresis curves are presented for typical values
of the anisotropy parameter for the case of |Jc| that decreases exponentially
with |B|.

1. Introduction

Bean [1] proposed the critical state model (CSM) that provides a description of irreversible
magnetization of hard type II superconductors. The model involves a material parameter,
the critical current density Jc. Solutions of CSM are available in the literature [2–7], for
field independent as well as field dependent Jc, for samples in parallel geometry where
demagnetization factor N = 0 and also for perpendicular geometry where N �= 0. In all
these solutions the critical current density is assumed to be isotropic, i.e., |Jc| does not depend
on the orientation of Jc. Although the assumption of isotropy is valid for many real samples,
there are situations where the assumption cannot be justified, especially for samples of high-Tc

superconductors with field parallel to the ab-plane [8]. Sen et al [9] have recently measured the
anisotropy in the critical current density in thin films of the newly discovered superconductor
MgB2 when the applied field is inclined to the c-axis. Schuster et al [10] have studied flux
penetration into thin rectangular samples having anisotropic critical current density in the
perpendicular geometry. This geometry pertains to N �= 0. Here the effects of anisotropy
are compounded with those due to a non-zero demagnetization factor. To study the effects of
anisotropy alone, it would be instructive to analyse the problem for the N = 0 geometry.
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Figure 1. The parallel geometry for a cylindrical sample is shown. The cylinder is infinite in the
z-direction. The long axis of the cylinder is parallel to the z-axis, which is also the direction of the
applied field Ba .

In the present paper, we consider cylindrical samples of hard type II superconductors in
a parallel geometry. The simple geometry brings out the essential features of anisotropy in
Jc and, moreover, is amenable to an analytical treatment. The paper is organized as follows:
in section 2, we present the formulation and a derivation of the general form of flux-fronts
assuming arbitrary cross-section for the cylinder and also an arbitrary form of the anisotropy
in Jc. This should suffice for the calculation of magnetization curves. However, for the
purpose of illustration, we have chosen elliptic cylindrical samples and the elliptic form [11]
of anisotropy for Jc. We present the details of our calculation for elliptic cylinders in section 3.
In the next section we present our results and summarize our conclusions in the last section.

2. Formulation

Consider an infinite cylindrical sample of a hard type II superconductor subjected to a magnetic
field Ba parallel to its axis that is taken to be the z-axis (figure 1). The magnetic field B within
the sample is determined from the equations

∂ B/∂x = −µ0 Jy, ∂ B/∂y = µ0 Jx (1)

where Jy and Jx are components of the shielding current density and satisfy the condition of
the CSM, J 2

y + J 2
x = |Jc|2. To study the effect of anisotropy in Jc·, we assume the general

form

|Jc| = Jco f (θ). (2)

Here θ refers to the direction of the current density, i.e., tanθ = Jx/Jy· = −(∂ B/∂y)/(∂ B/∂x),
and Jc0 is the critical current density in the absence of anisotropy. In general, Jc0 could be a
known function of the local field B , say, Jc0(B). From equations (1) and (2) we have

(∂ B/∂x)2 + (∂ B/∂y)2 = (µ0 Jc)
2 = (µ0 Jc0)

2 f (θ)2. (3)

Solution of equation (3) determines the function B(x, y) that assumes the value Ba on the
boundary and gives the distribution of the local field within the sample. It also determines the
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contours of constant B or the flux fronts. Before we determine the flux contours, following [12],
let us introduce a new variable, say, β, with the dimension of length. In [12] the indefinite
integral

β =
∫ B

dv/[µ0 Jc0(v)]

was used. We shall work with a definite integral representation of β with zero as the lower
limit. If we determine β, we can obtain B = B(β) by inverting the defining equation. We
shall also denote by βa the β-value corresponding to Ba, i.e., Ba = B(βa). Further, we will
assume that Jc0(B) is a monotonically decreasing function of |B|. Thus flux contours can be
determined from the knowledge of either B or β. The latter satisfies the equation

(∂β/∂x)2 + (∂β/∂y)2 = f (θ)2. (3′)

A comparison of equation (3′) (that does not involve Jc0(B)) with equation (3) shows that
the shape of the flux fronts is independent of the functional dependence of Jc0(B). If Jc0

is independent of B then β and B are linearly related B = µ0 Jc0β. It would be prudent to
work with equation (3′) rather than equation (3). Clearly, equation (3′) is a nonlinear first
order partial differential equation. Its solution can be obtained [13] as an envelope of its one-
parameter family of solutions, which, in turn, is obtained from its complete integral, i.e., a
solution involving two arbitrary constants. It is easy to see that the function

β = px + qy + r (4)

involving parameters p, q and r , that are independent of x and y, satisfies equation (3) provided

p2 + q2 = f (θ)2 (5)

with tan θ = −q/p. Thus p and q are related. If we also choose the parameter r as a function
of p we get a one-parameter family of solutions of equation (3). Alternatively, we choose a
parameter φ, and write p = ρ cos φ and q = ρ sin φ and set r = r(φ). We then have θ = −φ,
and if we choose ρ = f (φ), equation (5) reduces to an identity. In terms of the parameter φ,
equation (3) may be written as

β = ρ(x cos φ + y sin φ) + r(φ). (6)

For a fixed value of φ, equation (6) represents a plane in the (β, x , y) space. The envelope of the
one-parameter family of planes represented by equation (6) is obtained as usual by eliminating
φ between equation (6) and the equation

0 = ρ ′(x cos φ + y sin φ) + r ′(φ) + ρ(−x sin φ + y cos φ) (7)

obtained by differentiating equation (6) with respect to the parameter φ. In the above equation
a prime on a symbol denotes the derivative with respect to φ. The solution surface (envelope
of surfaces represented by equation (6)) must touch every member of the family. Thus each
point on the solution surface corresponds to some value of φ. Let us take x = x(s), y = y(s)
to be the parametric equations for the boundary of the cross section of the cylindrical sample.
The solution will satisfy the boundary condition if β(x(s), y(s)) = βa , is identically satisfied
for all values of the parameter s. Hence ∂β(x(s), y(s))/∂s must vanish for all s. These two
requirements determine which member of the family touches the solution surface at the point
(βa, x(s), y(s)), i.e determines φ as a function of s and also the unknown function r(φ). From
equations (6) and (7) we have

r(φ) = βa − ρ(x(s) cos φ + y(s) sin φ) (6′)

0 = ρ ′(x(s) cos φ + y(s) sin φ) + r ′(φ) + ρ(−x(s) sin φ + y(s) cos φ) (7′)
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valid for all s. Differentiating equation (6′) with respect to s yields

cos φ(dx/ds) + sin φ(dy/ds) = 0; (6′′)

equation (6′′) provides the relation between φ and s, i.e., it determines which member of the
family touches the solution surface at the point (x(s), y(s)). Equations (6′), (6) and (7) imply

β − βa = ρ[(x − x(s)) cos φ + (y − y(s)) sin φ] (8)

and

0 = ρ ′[(x − x(s)) cos φ + (y − y(s)) sin φ] + ρ[−(x − x(s)) sin φ + (y − y(s)) cos φ]. (9)

Using the relation ρ = f (φ) and solving equations (8) and (9) for x and y, we get the parametric
equations for constant B or the flux contours

x = x(s) − (h/ρ)[(ρ ′/ρ) sin φ + cos φ] (10a)

y = y(s) − (h/ρ)[sin φ − (ρ ′/ρ) cos φ]. (10b)

It should be noted that during the virgin curve, B > 0 and progressively decreases towards the
centre of the sample, and hence for all Jc0(B) decreasing with |B|β − βa is negative, while
during field reversal from the field increasing case β − βa is positive over part of the sample.
To cover both these cases we have used h = |β −βa| in equations (10a) and (10b). The entire
sample can be covered by means of flux contours if h is allowed to vary from h = 0 at the
surface to h = βp, at the field for full penetration.

Since we have solved equation (3′) the flux-contour parameter h = |β − βa| involves
β. In the case of constant Jc0, B = µ0 Jc0β and Ba = µ0 Jc0βa . In the general case of field
dependent Jc0, B is obtained from β by inverting the defining equation for β based on the
known field dependence of Jc0.

Equations (10), together with equation (6′′) that expresses a relation between φ and s,
represent the general result for flux fronts valid for cylindrical samples of any arbitrary cross
section whose boundary is represented by the parametric functions x = x(s), and y = y(s)
and for an arbitrary form of anisotropy. In principle, virgin and hysteresis magnetization of
the sample can be obtained using these equations. We shall now specialize these equations to
elliptic cylinders and elliptic form of anisotropy.

3. Elliptic cylinder and elliptic anisotropy

3.1. The flux contours

The elliptic boundary of the sample (the boundary of the transverse cross section of the cylinder)
may be represented by the parametric equations

x(s) = a cos s, y(s) = b sin s. (11)

The semi-axes of the ellipse are denoted by a and b respectively. Without loss of generality we
may assume a > b. To describe the anisotropy of Jc we choose in equation (2) the following
(elliptic) form of f (θ):

f (θ) = (cos2 θ + α2 sin2 θ)1/2. (12)

Using equations (11) in (6′′) we get the relation between s and φ: tan s = (b/a) tan φ. We now
express equations (10) that govern the shape of the flux fronts in terms of φ:

x = [(a2/�) − (h/ρ){2 − 1/ρ2}] cos φ (13a)

y = [(b2/�) − (h/ρ){2 − (α/ρ)2}] sin φ (13b)
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Figure 2. (a) Typical flux contours represented by equations (13) are plotted. The outermost is the
sample boundary of the elliptical cross section of the cylinder with semi-axes a = 1 and b = 0.5.
The next one just begins to have double points. All the other contours have visible loops at the
double points. These are mathematical solutions. (b) The physically acceptable flux contours
obtained from those in (a) by removing the loops at the double points. The anisotropy parameter
α = 2.5.

where

� = (a2 cos2 φ + b2 sin2 φ)1/2 (14a)

ρ = f (φ) = (cos2 φ + α2 sin2 φ)1/2. (14b)

It should be remarked that equation (13) represents mathematical flux fronts which can
possibly have double points corresponding to applied field beyond a certain value [2, 12].
The physically acceptable flux fronts must progressively reduce in size and can be obtained
from the mathematical flux fronts by dropping out the extraneous portions. Figure 2 should
clarify the situation. Figure 2(a) shows the mathematical flux fronts and figure 2(b) shows the
physically acceptable ones obtained from figure 2(a).

Equations (13) also determine Bp, the field for full flux penetration. At full penetration,
the flux contour reduces to a point (the centre of the sample) or a line that must pass
through the centre of the sample. Thus, at full penetration the point x = y = 0 lies on
the flux contour. A simple algebra using equations (13) and (14) leads to the result that
h p = |βp − β(0)| = min(a, bα), where min(u, v) stands for the smaller of u and v and βp is
the β-value corresponding to applied field Bp, Bp = B(βp). Hence Bp can be determined.

3.2. Determination of the double points

The form of equations (13) suggests that the flux fronts it represents are symmetric. In other
words, the points (x, y), (−x, y), (−x,−y) and (x,−y) all lie on the same flux front. It
therefore suffices to consider only the portion of the flux front lying in the first quadrant obtained
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by restricting φ to the interval (0, π/2). To determine a double point let us consider two points
(x1, y1) and (x2, y2) corresponding to the parameter values φ1 and φ2 respectively and seek
conditions under which, for φ1 �= φ2, the equations x1 = x2 and y1 = y2 are simultaneously
satisfied. These two equations can be simplified making explicit use of equation (13). The
equation involving the x coordinate leads to the following conditions:

cos φ1 − cos φ2 = 0 (15a)

a2

�1
− h

ρ1

(
2 − 1

ρ2
1

)
= cos φ2(cos φ2 + cos φ1)

[
a2(a2 − b2)

�1�2(�1 + �2)
+

h(α2 − 1)(2 − g)

ρ1ρ2(ρ1 + ρ2)

]
.

(15b)

We have used the notation �1 = �(φ1), ρ1 = ρ(φ1) etc, and g = (ρ2
1· + ρ2

2 + ρ1ρ2)/ρ
2
1ρ2

2 .
The equation involving the y-coordinate leads to

sin φ1 − sin φ2 = 0 (16a)

b2

�1
− h

ρ1

(
2 − α2

ρ2
1

)
= sin φ2(sin φ2 + sin φ1)

[
b2(b2 − a2)

�1�2(�1 + �2)
− h(α2 − 1)(2 − α2g)

ρ1ρ2(ρ1 + ρ2)

]
.

(16b)

The points (x1, y1) and (x2, y2) would represent a double point if φ1 and φ2 simultaneously
satisfied one of equations (15) and one of equations (16). Since we are looking for a solution
φ1 �= φ2, equation (15a) can be satisfied if we choose φ2 = −φ1. Then equation (16a)
cannot be satisfied. Thus a double point corresponding to φ2 = −φ1 must be a solution of
equations (15a) and (16b). But for φ2 = −φ1, the right-hand side of (16b) vanishes, hence the
double point corresponds to the solution of

b2

�1
− h

ρ1

(
2 − α2

ρ2
1

)
= 0. (16b′)

However, under the condition (16b′) it follows from equation (13b) that y1 = y2 = 0. Thus
the double point lies on the major axis of the elliptical cross section. The entire flux contour
has only two double points. Since there is only one variable, we may drop the suffix 1 without
any confusion and solve equation (16b′) for h and write

h = b2ρ/[�(2 − (α/ρ)2]. (17)

Equation (17) defines h as a function of φ, involving the parameters a, b and α. A simple
calculation of eliminating φ between � and ρ leads to the relation

�2

ρ2
=

(
b2 − a2α2

1 − α2

)
1

ρ2
+

a2 − b2

(1 − α2)
. (18)

We have assumed that a > b. The above relation implies that for α < 1 but aα > b, h is a
monotonically decreasing function of ρ, implying that it is a monotonically increasing function
of φ. The smallest value h = hmin is obtained for φ = 0 in (17). Thus, for h > hmin there is a
nonzero value of φ that can be obtained by solving equation (17) numerically. That determines
φ1 and φ2 = −φ1. For this case, physically acceptable flux contours can be obtained and are
shown in figure 3(a). They develop into a spindle shape and may be compared with the flux
contours for the isotropic case, namely α = 1 (figure 3(b)).

The above analysis fails if α > 1 and also for values of α so small that aα < b. In these
cases hmin occurs in equation (17) at a finite value of φ and this contradicts the assumption
that the double point is on the major axis. In these cases the double point must correspond to
a solution of equations (15b) and (16b). It is clear that at the onset of formation of the loop
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α  = 0.6(a)

α  = 1(b)

Figure 3. (a) Flux contours for the elliptical cylinder, with semi-axes a = 1 and b = 0.5 with
(a) α = 0.8 and (b) for the isotropic sample, i.e., α = 1.

(or the occurrence of a double point) h = hmin which should correspond to φ2 = φ1. Hence
to get an expression for hmin we must solve equations (15b) and (16b) under the substitution
φ2 = φ1 = φ and seek the minimum of the expression. This gives us

h = a2b2ρ3/[�3(2(1 + α2) − 3(α/ρ)2]. (19)

The function on the right-hand side of the above equation is not monotonic as a function of ρ

or φ. It attains a minimum (hmin) at a value of ρ = ρmin, given by

ρ2
min = 5α2(b2 − a2α2)

2{b2(2α2 + 1) − a2α2(2 + α2)} . (20)

The corresponding value of φ can be determined by solving (14b). For h > hmin we must solve
equations (15b) and (16b) as simultaneous transcendental equations to determine φ1 and φ2.
These can be solved only numerically. To this end we first obtained a relation involving only
φ1 and φ2 by eliminating h from equations (15b) and (16b) and cancelling a factor that vanishes
when φ1 = φ2, and also obtained a relation, symmetric in φ1 and φ2 from equations (15b)
and (16b) for determining h. The flux contours obtained following this procedure are shown
in figure 2(b).

3.3. Magnetization curves

The magnetization of the sample is calculated using the definition

µ0m = (1/A)

∫
(B − Ba) dx dy = −Ba + (1/A)

∫
B dx dy. (21)



1332 K V Bhagwat et al

Integration is performed over the cross sectional area A of the sample. Let us first consider
magnetization during the virgin curve for a zero-field-cooled sample. For this case we have
β − βa = −h. On the sample surface B = Ba, hence, h = 0. Similarly, on and within the
innermost flux contour B = 0, implying h = βa. It is advantageous to change the variables of
integration from (x, y) to (h, φ) as per equation (13). For a given applied field Ba, variation of
h may be restricted only to the range (0, βa) beyond which B = 0. The surface elements are
related through J , the Jacobian of the transformation,and can be calculated in a straightforward
manner; the result is

J (h, φ) = h[(3α2/ρ6) − {2(1 + α2)/ρ4}] + a2b2/�3ρ. (22)

The virgin magnetization can be written as

µ0mv = −Ba +
1

A

∫
B J dh dφ = −Ba − 1

πab

∫ βa

0
dh B(βa − h)

∫
J dφ. (23)

We noted earlier that flux contours develop corners for h greater than a certain hmin. These
correspond to the double points on the mathematical flux contours. For h > hmin the physical
flux fronts are obtained by omitting a certain range of φ values, say (φ1, φ2). We need to
determine the values of φ1 and φ2 for obtaining the physical flux fronts. The symmetry of the
integrand suffices the evaluation of the φ integral over quarter range, namely 0 to π/2, of which
the interval (φ1, φ2) is to be omitted. It is clear from the expression (22) for J that we need to
evaluate the indefinite integrals of ρ−4, ρ−6 and �−3ρ−1 over the variable φ. The former two
can be obtained in terms of elementary functions and the latter can be expressed in terms of
incomplete elliptic functions. We recall the definitions of ρ and � given in equation (14) and
give the final results.∫

dφ

ρ4
= 1

2α3

[
(1 + α2) tan−1(α tan φ) +

(α2 − 1)α sin φ cos φ

cos2 φ + α2 sin2 φ

]
(24)

∫
dφ

ρ6
= 1

8α5

[
(3 + 2α2 + 3α4) tan−1(α tan φ) +

4(α4 − 1)α sin φ cos φ

cos2 φ + α2 sin2 φ

+
(α2 − 1)2α sin φ cos φ[cos2 φ − α2 sin2 φ]

[cos2 φ + α2 sin2 φ]3

]
(25)

∫
dφ

�3ρ
= a(α2 − 1)

a2α2 − b2
F

(
θ,

√
b2 − aα2

b

)
+

a2 − b2

a(a2α2 − b2)
E

(
θ,

√
b2 − aα2

b

)
(26)

for b > aα and tan θ = (b/a) tan φ; E(θ, k) and F(θ, k) are the incomplete elliptic functions
of first and second kinds of modulus k. For the other case, namely aα > b, we have
∫

dφ

�3ρ
= (α2 − 1)

aα(a2α2 − b2)
F

(
θ,

√
a2α2 − b2

aα

)
+

a2 − b2

ab2(a2α2 − b2)
E

(
θ,

√
a2α2 − b2

aα

)

− (a2 − b2) sin θ cos θ

a2b2
√

a2α2 cos2 θ + b2 sin2 θ
(27)

where tan θ = α tan φ. For b = aα the integral is elementary and has the value∫
dφ

�3ρ
= 1

b3

[
(α2 + 1)

2
θ +

(α2 − 1)

2
sin θ cos θ

]
. (28)

Using the values of integrals (24–(28) in the expression (23) for virgin magnetization and the
expression (22) for J we have calculated the virgin magnetization. It reaches its saturation
value ms at the field Bp for full penetration. For Ba > Bp mv = ms .



Critical state model with anisotropic critical current density 1333

Magnetization under reversal of field from some field Bm can be expressed in terms of
virgin magnetization. Let us denote mv(Ba) the functional form for the virgin magnetization.
On the virgin curve, for Ba = Bm , m = mv(Bm). Let the applied field now be reduced to, say,
Ba = Bm −�B . The shielding currents near the surface region will reverse their sense of flow,
so as to shield the interior from the change of field −�B . Hence we can write magnetization
under field reversal m↓(Bm − �B) = mv(Bm) − 2mv(�B). We can increase −�B up to Bm

corresponding to applied field decreased to −Bm. To complete the loop the field is increased
from −Bm to Bm . The magnetization during the field increasing part of the loop is obtained
using m↑(Ba) = −m↓(−Ba).

3.3.1. Field dependent critical current density. The calculation of magnetization presented
above is directly applicable to the case of constant critical current density. As remarked earlier,
field dependence of Jc does not alter the shape of flux contours. It should be remembered that,
in the general case of field dependent Jc, the flux contours are labelled by the parameter
h = |βa − β|, with β as defined earlier. The above formula for magnetization (equation (23))
can then be utilized. For the exponential model we have Jc0 = Jc0(0) exp(−|B|/B0|), where
B0 is a parametric field that governs the decay of the current density. We calculate β from the
definition

β =
∫ B

0

dv

µ0 Jc0(v)
= ± B0

µ0 Jc0
(exp(|B|/B0) − 1). (29)

Thus for the virgin curve we have both B > 0 and Ba > 0, and we have

βa = (B0/µ0 Jc0)[exp(Ba/B0) − 1], β = (B0/µ0 Jc0)[exp(B/B0) − 1]

and consequently

h = (B0/µ0 Jc0)[exp(Ba/B0) − exp(B/B0)] (30a)

or equivalently

B = B0 ln[exp(Ba/B0) − (µ0 Jc0h/B0)]. (30b)

The flux-contour parameter h increases from zero to its maximum value βa , corresponding to
B = 0. Equation (30b) determines B in terms of h for h < βa . For h > βa , B = 0. Virgin
magnetization can be determined form equation (21). The virgin curve extends even beyond
the field Bp corresponding to full penetration. Since B > 0 everywhere, the B-profile is given
by equation (30b). This part of the virgin curve merges with the field increasing envelope
curve obtained below.

During the envelope curve shielding currents flow throughout the sample in one sense.
On the field increasing envelope, the local field B decreases towards the centre of the sample.
If we write βp = (B0/µ0 Jc0)[exp(Bp/B0) − 1] corresponding to the field for full penetration,
we have three situations, namely, (i) Ba < 0, (ii) 0 < Ba < Bp and (iii) Ba > Bp.

If Ba < 0, then B < 0 everywhere within the sample and using the appropriate expression
for βa and β we have

h = (B0/µ0 Jc0)[exp(−B/B0) − exp(−Ba/B0)]. (31a)

The profile B can be determined for this case by inverting the above equation.

B = −B0 ln[1 + (µ0 Jc0/B0){h − βa}]. (31b)

For the case (ii) (Ba > 0) we refer to the above development of the field profile for the virgin
curve. There we should allow the profile for B to continue beyond h = βa by letting B to be



1334 K V Bhagwat et al

α  =2.5

α  =0.6

Figure 4. A comparison of flux contours for a circular cylinder with α = 2.5 and 0.6.

negative (instead of setting B = 0) and use the expression for β relevant to the case B < 0,
namely, β = −(B0/µ0 Jc0)[exp(−B/B0) − 1]; we have

h = [βa + (B0/µ0 Jc0){exp(−B/B0) − 1}] (32a)

or

B = −B0 ln[1 + (µ0 Jc0/B0){h − βa}]. (32b)

Thus for Ba < Bp, we use equation (30b) to determine B for h < βa and equation (32b) for
h > βa . For Ba > Bp, B > 0 throughout the sample and can be obtained from equation (30b).
Once the local field profile is determined the envelope magnetization can be obtained.

To get a hysteresis loop, we must calculate magnetization by varying the applied field from
some value, say Bm , to −Bm and then increasing the field back to Bm . Thus it is imperative to
determine the magnetization on reversal of field. Reversal of field from a point on the virgin
curve corresponding to (Bm < Bp) leads to a small loop.

Let us start with the initial profile at the applied field Bm given by equation (30b) with
Ba = Bm and B decreasing to zero at the value of h = βm = (B0/µ0 Jc0)[exp(Bm/B0) − 1].
Let the applied field be decreased to Ba < Bm . The sense of induced currents near the surface
reverses. The local field B increases from its value Ba at the surface. The increasing profile
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Figure 5. Virgin curves for the exponential model Jc0 ∼ exp(−|B|/B0| with B0 = 0.5B∗, where
B∗ = µ0 Jc0a, for different values of the anisotropy parameter α are shown. The elliptic cylindrical
sample has semi-axes a = 1.0 and b = 0.5.

meets the initial profile at some local field, say, B ′, with the value of the flux front parameter
h′. The field profile B remains unchanged for h > h′. Thus Ba and h′ must be related. It is
clear that as we vary h′ from zero to βm the applied field will vary from Bm to −Bm. If Ba > 0,
B > 0, the field increasing part of the profile can be expressed in terms of h and h′. From the
initial profile we have

h′ = (B0/µ0 Jc0)[exp(Bm/B0) − exp(B ′/B0)] (33a)

and for the field increasing profile near the surface we have

h = (B0/µ0 Jc0)[exp(B/B0) − exp(Ba/B0)]. (33b)

For B = B ′ we have

h′ = (B0/µ0 Jc0)[exp(B ′/B0) − exp(Ba/B0)]. (33b′)

Eliminating B ′ between (33a) and (33b′) we get

exp(Ba/B0) = exp(Bm/B0) − 2(µ0 Jc0/B0)h
′). (34)

The increasing profile with B ′ > B > Ba is determined by inverting (33b) and using (34)

B = B0 ln[exp(Bm/B0) − (µ0 Jc0/B0){2h′ − h}]. (35)

If Ba < 0 then B < 0 near the surface (close to h = 0), and vanishes for h = h′
0 obtained

from equation (35) by setting B = 0.

h′
0 = (B0/µ0 Jc0)[1 − exp(Bm/B0)] + 2h′. (36)

For h < h′
0 the local field B < 0 and also Ba < 0. Following the procedure as outlined above

we get

B = −B0 ln[exp(1 + (µ0 Jc0/B0){h′
0 − h}]. (37)

For h′ > h > h′
0, B > 0 and is given by equation (35).
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Figure 6. The virgin curve and the envelope curves are shown for an elliptical cylinder with semi-
axes a = 1.0 and b = 0.5 and the exponential model for Jc. (a) For α = 2.5, the field for full
penetration Bp = 0.549B∗. The small and large hysteresis loops are also shown corresponding to
the reversal fields Bm = 0.2939B∗, Bm = Bp and Bm = 0.8959B∗ respectively. (b) The same as
(a) for α = 0.6. For this case Bp = 0.235B∗ and the reversal fields are Bm = 0.1312B∗ , Bm = Bp

and Bm = 0.5148B∗ . (c) We also show hysteresis curves for a symmetric sample (α = 1) for
comparison. For this case Bp = 0.3466B∗ and the reversal fields are Bm = 0.2027B∗ , Bm = Bp

and Bm = 0.6931B∗.

4. Results and discussion

We have presented a general method to obtain flux contours and magnetization curves for
cylindrical samples of arbitrary cross section, in parallel geometry, with anisotropic critical
current density. The method is applied to cylindrical samples of elliptical cross-section and an
elliptic form of the anisotropy.
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Mathematical solutions to flux contours develop double points. We have presented a
prescription to locate the double point and get physically acceptable flux contours. Figure 2
illustrates the procedure for an elliptical cylinder with semi-axes a = 1 and b = 0.5 and the
anisotropy parameter α = 2.5. For α < 1 but aα > b the character of the flux contours is
similar to those in an isotropic sample with b < a. Figure 3 illustrates this fact.

The effect of anisotropy would be best brought out if the sample were symmetrical. For
a circular cylinder of radius a = 1, flux contours are plotted in figure 4 for two values of the
anisotropy parameter α = 2.5 and 0.6. For the isotropic case (α = 1) it is well known that
the flux contours are concentric circles. There is a qualitative change in the shape of the flux
contours for α �= 1. It is seen that figure 4(b) is qualitatively similar to figure 2(b), while
figure 4(a) is similar to (b) rotated by 90◦. The manner in which the flux contours evolve, as
the field penetrates the sample, is different for the two cases α > 1 and α < 1 as seen from
figure 4. This is to be expected from the θ -dependence of |Jc| (cf equations (2) and (12)).

Virgin magnetization curves are presented in figure 5 for anisotropic critical current density
that decays exponentially with the local field, for three values of the anisotropy parameter α.
A comparison of magnetization hysteresis loops is presented in figure 6. Here we plot the
virgin curve, the envelope curves and the reversal curves for various reversal fields. The size
of the hysteresis loop increases with α.

For thin samples, to first order in d/L (d is the thickness and L is the lateral dimension
transverse to the applied field), the effect of anisotropy in the critical current density can be
taken into account by an effective field dependence of the critical current density [14]. For
cylindrical samples and elliptical form of the anisotropy treated here such a replacement is not
possible. Thus the fortunate circumstance mentioned above do not hold for thick samples.

Finally, the case of elliptic cylindrical samples and the elliptic anisotropy was chosen for
the purpose of illustration and the method presented is applicable to cylinders in general and
for other forms of anisotropy in Jc. The method was also applied to cylinders of rectangular
cross-section. For rectangular cylinders we found that (in a parallel geometry) shape dominates
anisotropy in that the flux contours are similar to those for an isotropic rectangular cylinder.
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